
Expansions for Coulomb Wave Functions 

By J. Boersma 

Abstract. In this paper we, derive a number of expansions for Whittaker func- 
tions, regular and irregular Coulomb wave functions. The main result consists of a 
new expansion for the irregular Coulomb wave functions of orders zero and one in 
terms of regular Coulomb wave functions. The latter expansions are especially 
useful with a view to the numerical computation of irregular Coulomb wave func- 
tions. * 

1. Introduction. Coulomb wave functions which play an important role in 
various problems in quantum mechanics (see e.g. Breit's foreword to [7], Messiah 
[6]) arise as solutions of the differential equation 

(1.1) d2w + [1 W 2X1 L(L + 1)]w =0 

where X is a real parameter, L a nonnegative integer, and p > 0. The Eq. (1.1) 
is a special case of Whittaker's equation (see Slater [8, Sections 1.6, 5.3]), hence its 
solutions can be expressed in terms of Whittaker functions. It is customary to define 
the regular Coulomb wave function FL(tn, p) and the irregular Coulomb wave 
function GL(II, P) in the following way (cf. [8, Formulas (5.3.6), (5.3.7)]) 

(L.2) FL(n, p) = AM ia,L+l,2(2ip), 

GL(n, p) = iAM i4,L+1 /2(2ip) + BWiq,L+1,2(2ip) 

where 

Ir(L + 1 + ij)l exp [-rn/2- (L + 1)7ri/21 
(1.3) zlA 2(2L+ 1)! 

B = exp [7rw/2 + Lri/2 - iW] 

with 0L defined through 

(1.4) exp (iO-L) = -r(+ 1 +in) 
IIr(L + 1 + it7)1 

The Whittaker functions M`,,(z), WK,(Z) are defined in [8, Sections 1.6, 1.7] (see 
also (2.3), (2.9)). For a comprehensive collection of results on Coulomb wave func- 
tions, the reader is referred to Abramowitz and Stegun [1, Chapter 14]. 

The plan of the present paper may be outliHed as follows. In Section 2 we present 
a number of expansions in terms of Whittaker functions. By means of (1.2) these 
expansions are translated into expansions for regular and irregular Coulomb wave 
functions (Sections 3 and 4). Finally, in Section 5 the computational aspects of the 
various expansions are discussed. 
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2. Expansions for Whittaker Functions. We start from the following expansion 
quoted from Buchholz [2, ? 11, Formula (16(3)]: 

(2.1) zp+leWz/2 = (2n + 2/ + 1) r(n + 2/. + l)Pf(P+KI-K)(w) MK,fl+#+l/2(z) 
n=O JP ~~~~~~~~(2n + 2/_ + 2) 

valid for 2,u # -2, -3, ... and arbitrary (complex) w, z and K. The notation 
Pn(a?#)(w) stands for the Jacobi polynomial of degree n (see [3, Section 10.8]). In 
(2.1) we substitute w = -1 and ,u = m where m is a nonnegative integer; then the 
Jacobi polynomial can be evaluated by means of [3, Formulas 10.8(3), (13)] and we 
obtain 

zrn-4-1e-zI2 (n + 2m)! (m + 1 -Kn _1M 

(2.2) n=Z (2n + 2m)!n! (1) M n+m+ii2() 

The present result is basic in that any power series made up of terms zm+l e-z/2 can 
be rearranged (by means of (2.2)) to an expansion in terms of Whittaker functions 
Mg,n+1/2(z) (n = 0, 1, 2, *...). In the remainder of this section we shall derive such 
expansions for the functions ez/2, Z(d/dz)MK,m+12(Z), and WK,1/2(Z). In deriving 
these expansions we make use of the following power series representation for 
MK, Al(\z), 

(2.3) MKxp(Z) = z +l/2eZ/2 E (L+2 . K)rzr 
r= O (2/,4 + r) r! 

valid for 2,u #-1, -2, * (cf. [8, Formula (1.6.4)]). 
We first derive an expansion for the function e-z/2 (this expansion is needed later 

on in connection with the term e-z/2 occurring in the representation (2.9) for the 
Whittaker function W,,1 /2(Z)). For that purpose we start from (2.1) with w = -1 
and take the limit for -> -1. The undesirable term MK,_1/2(Z) is removed by apply- 
ing the recurrence relation 

(2.4) Mi, i (z) + [ 
2K 

?]MK (Z) 
2i-1) (2/i + 1) - 

(2/ + 1 - 2K) (2/ + 1 + 2K) MK (Z) = 0 

8/ 2 + 1)2 (2/i + 2) 

The latter relation follows by suitably combining [8, Formulas (2.5.1), (2.5.6)]. As 
our final result we obtain the expansion 

-z/2 Mi, 1/2(z) KK ( ) + K) 

(2.5) z 2 '''+ 
12 

+ K 
0 

) )MKn12Z 
n=l (2n) !n(n+ 1) 

We remark that the present expansion, which is of slightly different type than (2.1), 
(2.2), is to be considered as the consistent extension of (2.2) to the case m = -1. In 
principle, similar extensions might be stated if m is an arbitrary negative integer. 
However, the resulting expansions being rather complicated we will not pursue this 
matter. 
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Next, we present an expansion for the derivative of MK,m+1/2(Z) (M = 0, 1, 
2, - *). According to (2.2), (2.3) we have 

z m+A d [zmMK,m+1/2(Z)I = mMVm+1/2(z) + Z(d/dZ)Mx,m+l2(Z) 

(2.6) =2 (m +(m +1 + K),(r + 2m - 2K) r+m+1 

(2.6) = ~~~(M + 2) r=O (2m +1) r r!(r +m-K)Z 

= (m + D) E (m+ 1 - )P (- 1)PSp Mjc,p+m+1 /2 (Z) 

P=o (2p + 2m)! where 

(2.7) S (r+p+2m)! (_,)rr+2m -2K 
( ) P ~~r=0 (2m-+ 1)r(p -r)!r! r +M m K 

In the appendix, Sp is evaluated in closed form (see (A.2)) and we obtain 

z (d/dz)MKc,m+1/2(Z) = (m + l)MKc,m+1/2(Z)+ -2 
(2.8, 00 

2 

x (2n (-)n [R(m + 1 + K)n + (_1)n(m + 1 - K)n]MK,n+mn+1/2(Z) n= 2n + 2m)! 
valid for m = 0, l, 2, 

In order to expand the Whittaker function WIV,1/2(Z) we start from the power 
series representation (cf. [8, Formula (1.7.18)]) 

WV, 1 2 (Z) = (-K) [MIx 1/2(z) log z - K-e + z-2/2 

(2.9) X X (l-K) 
E- (r+ 1) !!{(r + 1- K) - 4(r + l) - t(r + 2) lz' 

where 4'(w) is the common notation for the logarithmic derivative of the gamma 
function. The term e-z/2 in (2.9) is replaced by its expansion (2.5). Further, let the 
infinite series term in (2.9) be denoted by H(z) then using (2.2) H(z) can be rear- 
ranged to a series in terms of Whittaker functions, viz. 

(2.10) H(z) = E ( - K)P (-1)p Tp(1 - K) - Tp(1) -Tp(2) MK12(Z) 
po(2p)! 

where we introduced the notation 

(2.11) T~(a) = X (r + p)? 
(2.11) Tp (a) 

= 
E (r + l)!(p - r)!r! (-1)r (r + a) 

A closed-form result for Tp(a) is obtained in the appendix, Formulas (A.4), (A.7). 
As our final result we present the expansion 

WK,/2(Z)= ( r(1 -K) 

X [{tZ - K[lOg Z + ifr(1 - K) + 2-y - 1] - (1 - K)/21MK,112(Z) 

(2.12) 
1 (1 K)(1 + K) MK, 3/2(z) + 12 

+ 1n [1)n(1 

n= (2n n r 1 ) [ ( + K)n + (-)n)M(1 nK) ]M ( 
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Notice that in (2.12) we introduced the known values ,6(1) = -y, (2) = -'y + 1 
with y denoting Euler's constant (cf. [3, Formulas 1.7(4), (9)]). 

As a generalization of (2.12) one might derive a similar expansion for the Whit- 
taker function Wx,m+1/2(z) if m is a positive integer. However, the power series 
representation of the latter function will now contain terms Z-r e-Z/2 with r = 0, 
1, ***, m (cf. [8, Formula (1.7.18)]). As we did not consider the expansion of such 
terms in a series of Whittaker functions MK,n+l/2(z) (see the remark following (2.5)) 
we will abandon this generalization. 

The series of Whittaker functions MK,n+l/2(z) as presented in this section may 
be called series of the Neumann type, because of their analogy to the Neumann 
series from the theory of Bessel functions (see Watson [11, Chapter 16]). The expan- 
sion (2.12), for example, has as its counterpart the following expansion of Yo(z) in 
terms of Bessel functions Jn(z), 

(2.13) Yo(z) =-[{log (z/2) + y I Je(z) + 2 E (1) J2n(z)] 
n1=1 n 

(cf. [11, Section 3.57]). Some further results on Neumann type series of Whittaker 
functions are collected in [2, ? 11.3]. 

3. Expansions for Regular Coulomb Wave Functions. By means of (1.2) part 
of the expansions of Section 2 will be translated into expansions in terms of regular 
Coulomb wave functions. In the process of translation we shall need the following 
identities for the gamma and Al functions: 

e(31)[2 er + 1/2 
=ewP sinh 

]n11/2 = e2tP- 111/2 

Ir(1 + in)I - (I + in)r(I in)i 7r _ _ 2r7 _ 

(cf. [3, Formulas 1.2(1), (6)]) 

(3.2) Imi/i(1 + in) = (1/2i)[ (1 + in) - b(1 - in)] 2 + 1 

=-1/2-n + 2 coth 7r 1/2+ 2 +e2rn+1 

(cf. [3, Formula 1.7(11)]) where Im w denotes the imaginary part of w. Further, the 
following notation will turn out to be quite useful in the subsequent analysis, 

(3.3) 3m,L =am+L - 0m + L7r/2, m, L = O, 1, 2,**, 

where 0L is given by (1.4). Hence, the definition (3.3) is equivalent to 

L 

(3.4) =m,L 
E arctan [n1/(m + n)] + Lwr/2. nw=1 

We first consider the expansion (2.1). Substituting /u = 0, K = ij, z = 2ip we 
obtain 

(3.5) peiWP = [ePL v 112 (2L + 1) lL . p(in-in)(w)FL (77, p) L2wr i f 1( + in)LI 

valid for arbitrary complex w. After a similar substitution the expansion (2.2) re- 
duces to 
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M+l - ip re2rj _ 1 1 /2 2 -m 
(3.6) [e - 11/2 

x E (2L + 2m +1) (L 4 2m)! exp (-imA)FL+m(n, P) 

valid for m = 0, 1, 2, A special case of (3.6) viz. the case m = 0, was attributed 
in [9] to Henrici. 

Finally, from (2.8) we deduce the following expansion for the derivative of a 
regular Coulomb wave function 

(3 7) p(d/dp)FL (n, p) = (L + 1)FL(n, p) 
00 

+ E (2n + 2L + 1)(-1)n COS 6L,n FL+nf(n, p) 
n=1 

valid for L = 0, 1, 2, 

4. Expansions for Go(7, p)I Gl(7, p). In the present section we will derive expan- 
sions for Go(q, p), Gl(q, p) in terms of regular Coulomb wave functions. According to 
(1.2) Go(q, p) is given by 

(4.1) Go(q, p) = iFo(r,q p) + exp [7r/2 - io-o]WjW,11/2(2ip) 

The Whittaker function Wi,,, /2(2ip) is now replaced by the expansion (2.12) with 
K = i'q, z = 2ip. By means of (1.2) the latter expansion can again be expressed in 
terms of regular Coulomb wave functions. The resulting expansion for Go(q, p) can 
be simplified further by an application of (3.1), (3.2) and we ultimately obtain 

Go(,q, p) =e2rn 1 [{p-1 + 2n [log 2p + Re 4J'(1 + iq) + 27 - 3/2]}Fo(77, p) 

(4.2) -(1 + 12)"2Fl(7, P) 

- 

0 
2+ 1) 

1 
COS LL\f -4r =EL(L ++ 1)(-)cso F(,p] 

where O,L is defined by (3.3). 
The present expansion has been checked by substituting the right-hand side of 

(4.2) in the differential equation (1.1) with L = 0. Using (3.7), (4.4) with L = 0 it 
has been shown that the expansion (4.2) is indeed a solution of (1.1). Further, it can 
be verified that (4.2) shows the proper behaviour near p = 0. Hence, the expansion 
(4.2) is correct. 

As an obvious generalization of (4.2) one might consider expansion of the func- 
tion GL(1q, P) (L = 1, 2, * * ) in a series of regular Coulomb wave functions. How- 
ever, in order to make such a generalization one first has to extend (2.12) to an ex- 
pansion for the Whittaker function WK,L+1/2(z). Therefore, in the following we will 
use a different approach. At the same time we confine our investigation to the 
function Gl(,q, p). 

From [1, Formulas 14.2.1, 2, 3] we quote the following recurrence relations for 
the Coulomb wave functions: 

(4.3) L duL/dp = (L2 + 2)/2uL-1 - (L2/p + fl)UL 

(4.4) (L + l)duL/dp = [(L + 1)2/p + 7q]UL - [(L + 1)2 + U2]'12UL+l1 
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(4.5) L[(L + 1) + X 
]1UL+1 = (2L + 1)[n + L(L + 1)/PIUL 

-(L + 1)(L + X)'UL_1 

where UL stands for either FL (71, p) or GL(1l, p). As a special case of (4.4) we have 

(4.6) DFo(n, p) [-d/dp + l/p + q]Fo(,q, p) = (1 + t)7 Fi(,qI p) 
while the same relation holds if F is replaced by G. Now we apply the operator D (as 
defined by (4.6)) to both sides of (4.2), obtaining 

(1 + nl2)"l /2G (rm 72) = e -I1 

(4 7) X p- + 27[log 2p + Re if(1 + in) + 2'y - 3/2]} (1 + n2)112 F12, p) 

+ (2 -2_ 2,qp-')Fo(n, p) - (1 + 2)"2DF (7, p) 

- 4tL( + 1) (-1)L Coso,LDFL(n, PJ] 

The latter result can be simplified as follows. The term p'Fi(n, p) is eliminated by 
means of (4.5) with L = 1. By properly combining (4.3) and (4.4) one has 

L2 + ~2)1/2FL(,p+?1Lf,) 
(4.8) DFL(7,P) 2L + 1 FL-1 p) + rFL Oq, P 

+ [(L +1)2+ 21 ] P) 

valid for L = 1, 2, .. .. This result is substituted into (4.7). Then the infinite series 
in (4.7) can be rearranged using the identities 

[(L + 1)2 +nX21"2 - (2L + 3) 
L(L + 1) COS o,L-(L + l) (L +2) COSao,L+ 

_(L + 2) (L++ ) 

= L2(L ++ 3) [sin P0,)+- cos Ao,L?I = + 3 (1 + p2)1/2 COS 1 

2L + I~~~~~~~~~~ 

(4.10) CoS Lu,t = - 11 + This COS is = - (1 + the + 2 e1i2 

which follow from (3.4) in a rather simple way. Omitting all further details, we 
present as our final expansion for G2(1, p), 

G[(nL e2 1 [{C 2 -O2IpL+ n (1+4X2)} 3Fo(CO0 p),L+1 

(4.11) + 2n{log2+ 1 ReiL(1 + i) + 2) 9 - 21+4f} 

-?t (4 + r2\1/2F2(7Z, p)-4t 2L + 3 

L(L + 3),P l~L(L + 3)1 
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The present result has been checked in a similar way as the expansion (4.2) for 
Go(n, p). 

5. Computational Aspects. In practical applications of Coulomb wave functions, 
one often needs sequences of values FL('q, p), GL(n, p) for fixed q, p and L = 0, 
1, * * Lmax. The obvious tool for generating such sequences is the recurrence rela- 
tion (4.5) which holds both for regular and irregular Coulomb wave functions. 
However, it is well known by now that the recursive computation of sequences may 
suffer from a serious loss of accuracy due to numerical instability. 

In a recent paper [4] Gautschi investigates the problem of numerical instability 
for general three-term recurrence relations. In this connection he introduces the 
concepts of minimal solution and dominant solution of a recurrence relation. Start- 
ing from two initial values an application of the recurrence relation in the forward 
direction (i.e. in the direction of increasing order) yields a disastrous build-up of 
errors for the minimal solution, whereas the computation of the dominant solution 
remains numerically stable. Gautschi's paper mainly concentrates on the develop- 
ment of appropriate algorithms for the computation of minimal solutions, followed 
by applications to the computation of various transcendental functions. In [4, 
Section 7] the general theory is applied to the recurrence relation (4.5) for Coulomb 
wave functions. Owing to the behaviour of FL(7, p), GL(7, p) as L -? o, viz. 

-L 

(.) FL (7/, P) -- CL(71)P nl GL(71, P) 
p 

(2 )C(1 L 3-- ?? 2L+ 1) CL(n7)' 

with 

(5.2) CL(P) = 2 Le/2 I r(L + 1 + it7)1 (5.2) CL 00 ~~~~(2L + 1)! 
(cf. [1, Formula 14.6.3]), FL(71, P) is a minimal solution of (4.5) and GL(71, p) is a 
dominant solution of (4.5). An algorithm for generating the set of values FL(nq, P), 
L = 0, 1, Lmax is described. This algorithm uses the expansion (3.5) as its 
normalization identity. An ALGOL procedure based on this algorithm is described 
in [5]. 

A similar algorithm for the computation of regular Coulomb wave functions was 
proposed before by Stegun and Abramowitz [9], using the series (3.6) with m = 0 for 
normalization. However, according to Gautschi [4] the latter algorithm becomes less 
accurate when X and p are positive and large. 

The irregular Coulomb wave function being a dominant solution of (4.5), the 
sequence GL(n, p), L = On 1, Lmax can be generated by means of the recurrence 
relation (4.5) applied in the forward direction. In order to start the recursion one 
first has to determine the initial values Go(rl, p), Gi(r, p). The latter are readily ob- 
tained from the expansions (4.2), (4.11) substituting the set of values FL(nq, p) as 
calculated before. Alternatively, one might also determine Gl(rq, p) from the Wron- 
skian relation (cf. [1, Formula 14.2.5]) 

(5.3) Fo(r,q p)Gi(rq, p) - Fi(r, p)Go(r,q p) = 1/(1 + -q2)1/2. 

Finally we remark that the present scheme for the calculation of Coulomb wave 
functions shows a great similarity to an algorithm devised by Stegun and Abramo- 
witz [10] for the computation of Bessel functions of the first and second kinds. The 
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latter algorithm uses the expansion (2.13) for obtaining Yo(z) as compared to our 
scheme using the corresponding expansions (4.2), (4.11) for the computation of 
Go(n, p), Gi(n, p). As a matter of fact, it was this similarity which guided us in the 
present investigation. 

Appendix. In this appendix we will evaluate the finite sums Sp, Tp(a) as intro- 
duced in Section 2. It is shown that these sums can be expressed in terms of hyper- 
geometric series with unit argument. The latter series can be summed explicitly by 
means of theorems of Gauss and Saalschiitz, (cf. [3, Formulas 2.8(46), 4.4(3)]). 

(i) Evaluation of S,. In (2.7) S, was introduced as 

(A.1) S (r+ p+2 (_))r r + 2m-2K 
r=O (2m + l),(p - r)!r! r + m-K 

which can be reduced to 

)5p +2rn) {2FI(P + 2m+ 1,-p;2m+ 1;1) 

(A.2) + 3F2 p + 2m + 1, m -p; 1]} 

(2m)![(-1)P + (m + 1K)p] 

(ii) Evaluation of Tp(a). According to (2.11) Tp(a) is given by 

p 
(A.3) Tp (a) = L (r+p)?,(r+ ) 

r=0 (r + 1)! (p - r)!r! 
The latter sum is meaningful provided a # 0, -1, -2,* 

For p = 0 it is obvious that 

(A.4) To(a) = ;(a)* 

For p ? 1 we substitute (cf. [3, Formula 1.7(10)]) 
r-1 

(A.5) A(a + r) = {(a) + 
j=o a + j 

then (A.3) passes into 

a =(r + p)! (-1) 
r=o (r +l)(p -r)r 

(r+ p)! _(1r-~1 
(A.6) +=1 (r + l)!(p-r)!r! (1) o a +j 

= iI(a)J2F(p + 1, -p; 2; 1) 

(i+ p + )! (__j+_ =0-- (j + 2)! (p- j -l)! (j+ 1)! a + j 

X F+ p + 2, 1,--p +j +1;Ii X 3F2 j j+ 3 j+2 J 
These hypergeometric series can again be evaluated in the way mentioned above 
and- one obtains 



EXPANSIONS FOR COULOMB WAVE FUNCTIONS 59 

T ( )- 1 P-, (+ p + 1)! 1-)j+1 p a (p + 1) j=O (j +l)! (p - j - 1)j! a + j 

(A71 =2F,(p+ 1, -p+ 1;2;1) 

+p + 1a F2p + 1, a, -p + 1; 1] 
+ a LF 2,a+ 1 

P(p+1)L (a), J p 1,2,3,*- 
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